
TEAPC: Adaptive Computing and Underclocking in a Real PC

Augustus K. Uht and Richard J. Vaccaro Dept. of Electrical and Computer Engineering

UNIVERSITY OF Rhode Island

Copyright © 2004, A. K. Uht, R. J. Vaccaro Patent applied for.

Prior work: *TEAtime* (<u>Timing Error Avoidance</u>)

- "Maximized" performance. All hardware. Method:
 - Use one-bit copy of worst-case delay path in system; add a small safety-margin delay.
 - 1. Speed up clock 'til just before <u>real</u> error would occur
 - 2. Slow down clock
 - 3. Repeat: GOTO 1.
- TEAtime adapts to:
 - Current environmental conditions (e.g., temperature)
 - Current operating conditions (e.g., voltage)
 - Prior manufacturing conditions (quality of a prod. Run)
 - Prototype almost doubled performance

- 1. Motivation and Goals
- 2. Related Work
- 3. TEAPC's Features
- 4. Feedback-Control System
- 5. TEAPC Software and Hardware Details
- 6. Experiments
- 7. Summary
- 8. Demo

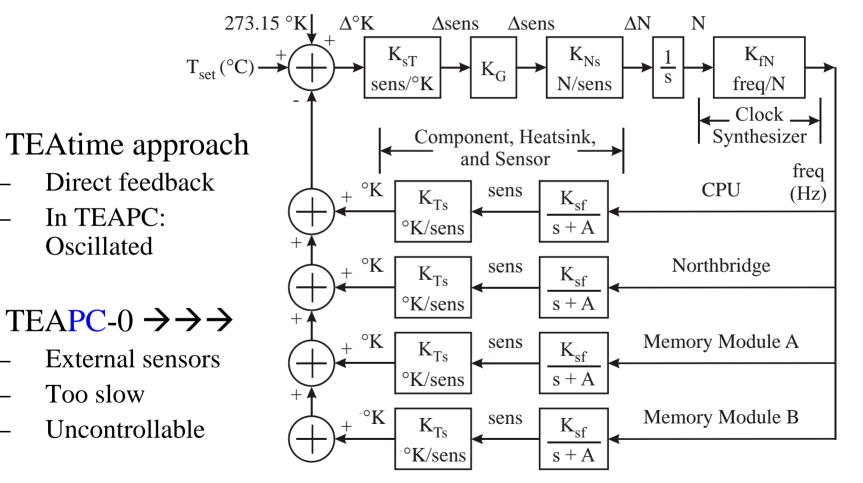
Motivation and Goals

- Motivating Goals:
 - Realize TEAtime characteristics in a real computer
 - Adaptive computing
 - Improved performance "Better-than-Worst-Case"
- Additional Goals:
 - 1. Workload adaptation
 - 2. Reduced power consumption
 - 3. Improved reliability
 - 4. Disaster tolerance (always enabled)
 - 5. ...and all in a real machine
- <u>BUT</u>: can't redesign or build Pentium 4's
- <u>SO</u>: use real IBM/Intel-standard PC IBM PAC2: October 6, 2004 *TEAPC*

Related Work

- Rohou & Smith, 1999 temperature adaptive system
 - Adjusted temperature with frequency changes
 - BUT: required modifying OS (Linux)
 - Performance not enhanced
- Skadron et al, 2002 temperature adaptive system
 - Used classical feedback control theory
 - Modeled and controlled temperatures of parts of a chip
 - Instruction-fetch toggling controlled temperature
 - Performance reduced
- (Note: ~all adaptive methods useful for <u>either</u> or <u>both</u>:
 - Performance improvement
 - Power reduction)

TEAPC's Key Features

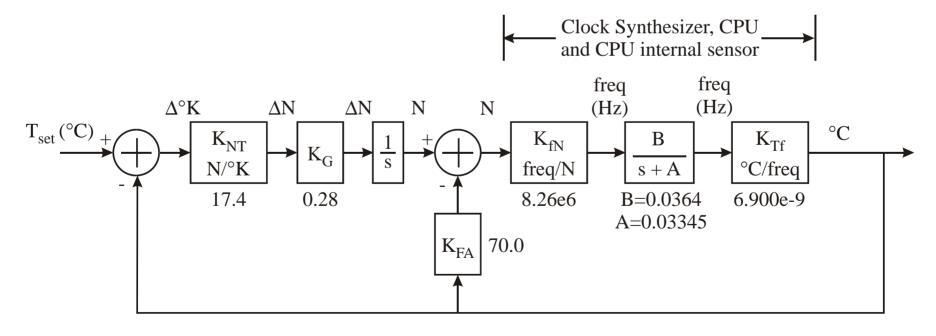

- High thermal capacitances and delays, hence: Modern feedback-control theory and system used
 - Input: CPU's internal temperature (from embedded thermal diode)
 - Outputs: CPU's clock frequency (I/O clocks unmodified), Vcore
- User-control provided by control system's Tset point
- Entire system realized in Windows application
 - No OS modifications Windows 2000 used
 - No hardware modifications all COTS parts
- Applicable to many kinds of PC's
 - New designs of commercial PC's
 - Possibly existing motherboards (MOBO)

1.

2.

Control System History

Note: all of the constants of the four components differ.


IBM PAC2: October 6, 2004] [*TEAPC*

7 of 15

Final Control System

- Only input is CPU temperature (feedback line)
- Primary output is CPU frequency (N) [sometimes: Vcore = f(N)]
- State-space discrete control system design (modern)
- Quick response

IBM PAC2: October 6, 2004) (*TEAPC*

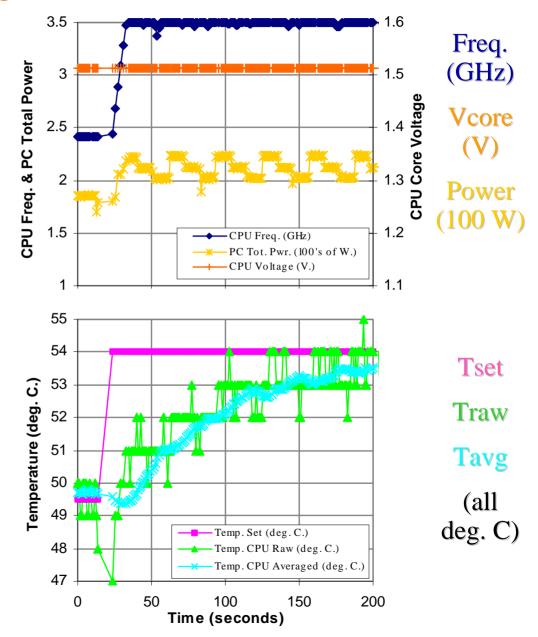
teapc Control Program

- Windows application no changes to OS
- Uses x86 I/O address space to access hardware
- Small: 800 kilobytes

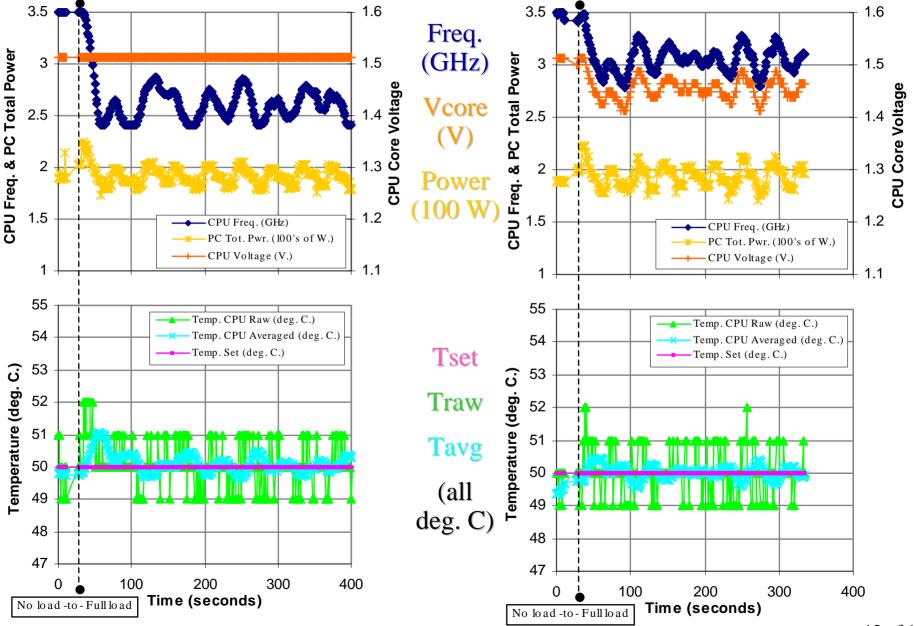
IBM PAC2: October 6, 2004

- Fast: < 5% CPU utilization
- Control loop updated every second
- Hard limits on max./min. frequency

TEAPC



TEAPC Components


PC Component	Manufacturer	Part Number/Description
Motherboard	Gigabyte	GA-8KNXP (Rev. 2); w/DPS regulator
CPU	Intel	P4 3.0 GHz, 800 MHz bus
Chipset	Intel	875P, ICH5R
Clock Synthesizer	ICS	ICS952635
Super I/O (Environment Mon.)	ITE	IT8712F V0.6
CPU Volt. Regulator Control	ITE	IT8206R V0.1
Main Memory	Ultra	U10-5903R; 2 x 512 MB; 400 MHz DDR, Dual Channel (Operated at 320 MHz.)
Operating System	Microsoft	Windows 2000 SP4, HT disabled
Disk System – RAID 0+1	ITE	GigaRAID IT8212F
Disks	Maxtor	4 x 6E040L0, 40 GB, 133MHz IDE
Equipment for experiments only		
Fan Controller & Temp. Mon.	Thermaltake	Hardcano 12; for 4 fans, 4 thermocouples
Power Meter	Electronic Educational Devices	watts up? PRO (Note: this is the unit's model name.)
CPU Fan Controller	custom	On/Off, control sel. (MOBO or Hardcano)

Underclocking & Performance "Maximization"

CPU nominal freq. = $3.0 \text{ GHz} \rightarrow$

12 of 15

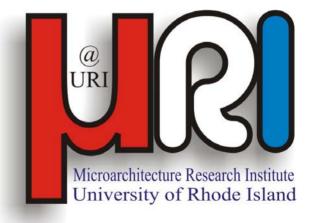
Disaster Tolerance

- Example: CPU Fan dies....
- Changes (automatic, via feedback system):
 - Freq: 3.5 GHz -> 1.1 GHz
 - Vcore: 1.5125 V. -> 1.0875 V.
 - \rightarrow Power: 222 W. -> 140 W. (<u>37% savings</u>)
- CPU temperature stabilizes at safe value (with this CPU)
- System still functional

- TEAPC realizes:
 - 1. Better-than-worst-case performance
 - 2. *Adaptive* operation to both environment and loading
 - 3. Low-power, high-reliability operation
 - 4. Disaster tolerance
- Feedback-control great for a system, too
- *<u>Underclocking</u>* is a great tool
- It Works!

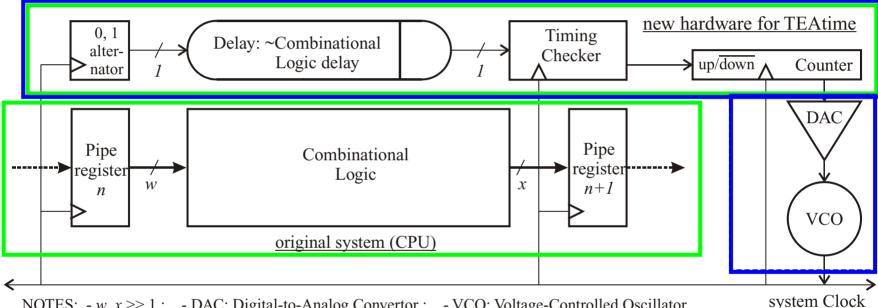
...and now it's time for the:

DEMO


IBM PAC2: October 6, 2004 TEAPC

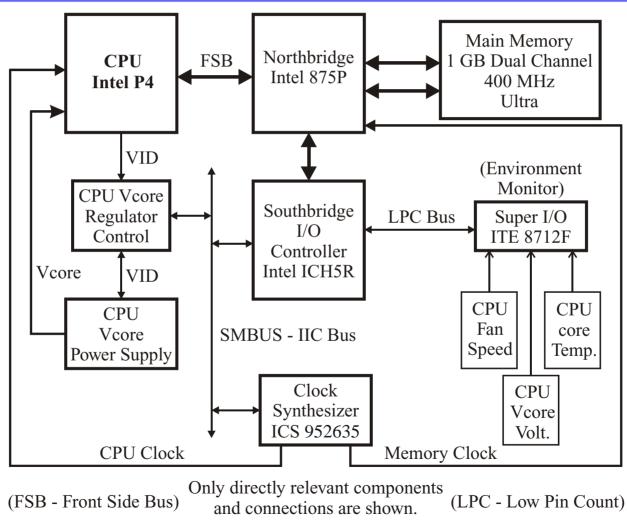
TEAPC: Adaptive Computing and Underclocking in a Real PC

Augustus K. Uht and Richard J. Vaccaro Dept. of Electrical and Computer Engineering


UNIVERSITY OF Rhode Island

Copyright © 2004, A. K. Uht, R. J. Vaccaro Patent applied for.

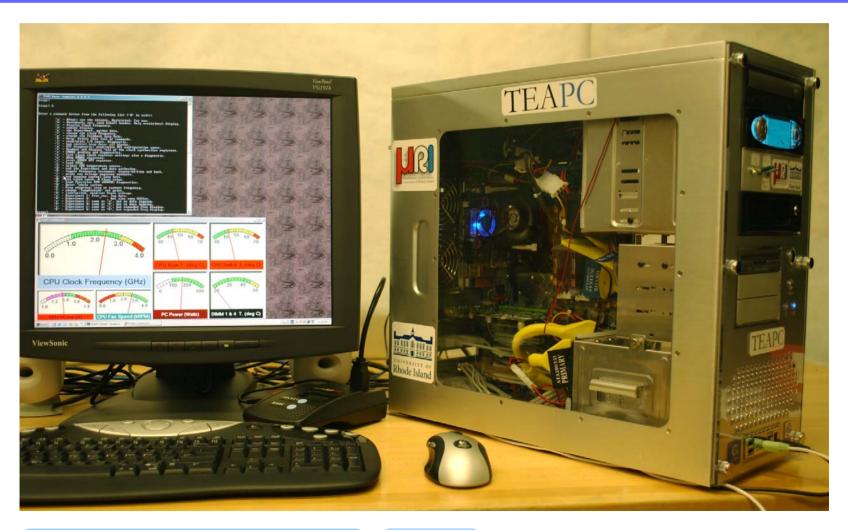
TEAtime Block Diagram


NOTES: $-w, x \gg 1$; -DAC: Digital-to-Analog Convertor; -VCO: Voltage-Controlled Oscillator.

- Timing Error Avoidance system
 - Blue: TEAtime hardware
 - Green: on FPGA

TEAPC IBM PAC2: October 6, 2004

TEAPC Block Diagram



IBM PAC2: October 6, 2004) (

TEAPC

Experiment Setup

TEAPC

Goal	Tset		Goal	Tset
Comments		Comments		
Low power, high reliability Low		Disaster tolerance	Any	
Low CPU freq. & Vcore. Un-intensive apps., e.g.: web-browsing. Still works.		TEAPC always enabled for disaster tolerance.		
Mid- power & reliab. Mid-range		Environment adaptivity Any		
CPU freq. & Vcore vary. Ex.: Moderately-intensive apps. such as low-end animation.		E.g.: High temps.: CPU temp. kept to safe level. Still works. E.g.: Low temps.: High perf.		
High performance	High:	freq. pegged		
High CPU freq. & Vcore. Ex.: FPGA net routing; 3-D games.				

TEAPC